
Distributed Data Access in the Sequential Access Model at the D0

Experiment at Fermilab

Igor Terekhov, Victoria White
(for the SAM [1] project)

F ermi National Accelerator Laboratory, Batavia, IL, USA
fterekhov,whiteg@fnal.gov

We present the Sequential Access Model (SAM)[1],
which is thedata handling system for D0, one of tw o
primary HighEnergy Experimen ts at F ermilab. Dur-
ing the next several y ears, the D0 experiment will store
a total of about 1 PByte of data, including raw de-
tector data and data processed at various levels. The
design of SAM is not speci�c to the D0 experiment
and carries few assumptions about the underlying mass
storage level; its ideas are applicable to any sequen-
tial data access. By de�nition, in the sequential access
mode a user application needs to process a stream of
data, by accessing each data unit exactly once, the or-
der of data units in the stream being irrelevant. The
units of data are laid out sequentially in �les. The
adopted model allo ws for signi�cant optimizations of
system performance, decrease of user �le latency and
increase of overall throughput. In particular, cac hing
is done with the knowledge ofall the �les needed "in
the near future", de�ned as all the �les of the already
running or submitted jobs.

The bulk of the data is stored in �les on tape in the
mass storage system (MSS) called Enstore[2] and also
developed at F ermilab. (The tape driv es are served
by an ADIC AML/2 Automated T apeLibrary). A t
any given time, SAM has a small fraction of the data
cached on disk for processing. In the present paper,
w e discuss how data is delivered onto disk and how it
is accessed by user applications. For a recen tbroad
review of SAM, see [3]. We will concentrate on data
retrieval (\consumption") from the MSS; when SAM
is used for storing of data, the mechanisms are rather
symmetrical.

All of the data managed by SAM is cataloged in
great detail in a relational database (ORACLE). The
database also serves as the persistency mechanism for
the SAM serv ers described in this paper. Any clien t
or server in the SAM system which needs to store or
retriev e information from the database does so through
the interfaces of a CORBA-based database server. The

users (ph ysicists) use the database to de�ne, based
on physics selection criteria, datasets of their interest.
Once the query is de�ned and resolv ed into a set of
�les, actual data processing, called a project, may be-
gin. Obviously, running projects involv es data transfer
and resource management.

The computing facilities with their CPU, disk, and
other hardware resources are logically partitioned into
collections of resources called stations. A station may
be a single node, a fraction thereof (some of the ma-
chine's disks and/or CPUs may constitute a station)
or a collection of smaller nodes. It is equipped with
a server, called station master (SM), that coordinates
data delivery and projects using the data. User re-
quests to actually run a project proceed through the
SM, which determines the amount of cache replace-
ment, if any, needed to run the project. If viable, the
user job is submitted into a station-associated batch
queue, otherwise the project is rejected and the user
may try another station.

Thus, the total "disk" need not be concentrated on
a single machine; rather, it is arbitrarily apportioned
to stations. Each station is dynamically con�gurable
and controls its own disks but may access other sta-
tions' disks thus rendering the whole of the disk space
a fully distributed cache. Within each station, the local
resources are further divided (in the \fair share" fash-
ion rather than partitioned) among di�erent researc h
groups. Within eac h group, the access patterns and
the datasets of interests highly correlate, thus allowing
each group to vary dynamically its cache replacement
policy for optimal performance. Thus, the SM's cache
manager is really a coordinator of groups' sub-cache
managers.

Data delivery is performed asynchronously with re-
spect to its consumption. In what follows, we describe
how each project's consumption is coordinated by the
SAM server called the project master (PM). There are
tw o access modes of fundamental importance, both of

9th IEEE International Symposium on High Performance Distributed Computing (HPDC'00)
1082-8907/00 $10.00 @ 2000 IEEE

which have been successfully used at Fermilab.

In the �rst mode, called the \Freight Train", a re-
searc h group needs to scan a large (e.g., multi-TB)
dataset, so that its disk cache e�ectively acts as a
bu�er. Each participant registers his or her application
as an independent consumer each of which is intended
to "see" every �lein the dataset. Naturally, di�erent
consumers ha vedi�erent processing speeds, and the
PM enforces the pace by limiting the maximum time
a consumer works on a �le. (A consumer which timed
out for any reason will have to miss some of the �les in
the dataset; thus, the mode is best suited for already
debugged, production type applications.)

A consumer application may have multiple threads
of data processing. SAM refers to suc h conceptual
threads as consumer processes sharing the consumer
identity (CID). These processes may be implemented as
threads or separate operating system processes. Dur-
ing the project, an yprocess may be given any of the
�les from the dataset but di�erent consumer processes
"see" di�erent �les. New consumer processes may be
added dynamically; in fact, a "slow" consumer may
"catch up" with the Freight Train by registering a new
process, contingent on CPU and other resource avail-
abilit y.

In the second fundamental mode, called the \Farm"
[4], di�erent consumer processes may run on physically
di�erent machines thus rendering the "consumer" an-
other distributed concept. (The Farm is the F ermilab
term for a uniform cluster, typically Linux). Files are
routed to di�erent farm nodes as bu�erspace therein
becomes available, The aforementioned capability to
dynamically add (and remove) consumer processes is
particularly useful for this access mode. The clus-
ter nodes are units of resources for the Farm Batch
System[5] which may dynamically reallocate the nodes
to di�erent jobs (SAM projects). As with distributed
computing in general, Farm mode data access is fault-
tolerant: if an entire node becomes unavailable for any
reason, the project master will even tually ensure that
the unconsumed �les that have been (or are being) de-
livered to the node will be re-routed to consumer pro-
cesses on other nodes.

The Freight Train and the Farm constitute the tw o
orthogonal axes for data delivery. Any hybrid mode is
possible whereby multiple machines comprise a station
that runs multiple project masters which coordinate
�le delivery and consumption to multiple consumers
which in turn have multiple process running at di�er-
ent nodes. This capability to use resources under dis-
tributed ownership justi�es SAM as a fully distributed
data handling system.

The Mass Storage System is a single global resource

in the system. (the cardinality is driv enby economi-
cal reasons). The results of our practical analysis, not
shown here, are such that the aggregate A TLband-
width could not satisfy an uncoordinated stream of
data requests from the hundreds of users. Thus, in ad-
dition to an eÆcient disk caching, SAM must provide
coordination of requests to the MSS from the di�er-
en t stations. Note that the MSS itself performs opti-
mizations of already submitted requests. SAM how-
ev er, performs resource management and optimization
of requests before they are even forwarded to the MSS.
A single server, called Optimizer, or Global Resource
Manager, groups (typically by volume) and regulates
requests from di�erent cache managers. Each Station
Master must acquire Optimizer's authorization for �le
requests, and the authorized request group is treated
as the unit of MSS transfer. (Of course, �les from a
group may be routed to di�erent disks/nodes).

All of the distributed components are implemented
with CORBA[6] interfaces in C++ and Python with
some GUI written in Java. We use ORBacus and Fnorb
[7] products.

We ha vedescribed the SAM system that pro vides
access to distributed data at F ermilab. As of Spring
2000, physicists at our laboratory have successfully
used SAM for sev eral months for storage and sub-
sequent retriev al and processing of sev eral TBytes of
data.

References

[1] The SAM project L.Lueking1, H.Schellman2,
I.T erekhov, J.Trumbo, S.Veseli, M.Vranicar,
R.Wellner, S. White, V.White1. 1 Project Leader
2 Northw estermUniversity, Evanston, IL, USA
http://d0db.fnal. gov/s am.

[2] The Enstore project home page
http://www-isd.fn al.go v/ens tore.

[3] V.White for the SAM project, \The Data Ac-
cess La yerfor D0 Run II: Design and F eatures
of SAM", talk given at The International Confer-

enc eon Computing in High Energy and Nuclear

Physics (CHEP 2000), F ebruary, 2000, P ado va,
Italy ,

[4] H.Schellman et al. , \Report on the D0 Linux Pro-
duction Farms", CHEP2000, see [3].

[5] The FBS project http://www-isd.fnal .gov/fbs.
[6] The OMG home page http://www.omg.com.
[7] \ORBacus for C++ and Ja va"

http://www.ooc.co m. \Fnorb, a Python ORB"
http://www.fnorb. org.

2

9th IEEE International Symposium on High Performance Distributed Computing (HPDC'00)
1082-8907/00 $10.00 @ 2000 IEEE

